The Cubic Chan–Chua Conjecture

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterexamples to the Cubic Graph Domination Conjecture

Let v(G) and γ(G) denote the number of vertices and the domination number of a graph G, respectively, and let ρ(G) = γ(G)/v(G). In 1996 B. Reed conjectured that ifG is a cubic graph, then γ(G) ≤ ⌈v(G)/3⌉. In 2005 A. Kostochka and B. Stodolsky disproved this conjecture for cubic graphs of connectivity one and maintained that the conjecture may still be true for cubic 2-connected graphs. Their mi...

متن کامل

Kummer’s Conjecture for Cubic Gauss Sums

for primes p ≡ 1 (mod 3) up to 500, and found that Sp/(2√p) lay in the intervals [−1,− 12 ], (− 12 , 12 ), [ 1 2 , 1] with frequencies approximately in the ratio 1 : 2 : 3. He conjectured, somewhat hesitantly, that this might be true asymptotically. Kummer’s conjecture was disproved by Heath-Brown and Patterson [4]. In order to state their result we must introduce a little notation. Let ω = exp...

متن کامل

Stark's conjecture over complex cubic number fields

Systematic computation of Stark units over nontotally real base fields is carried out for the first time. Since the information provided by Stark’s conjecture is significantly less in this situation than the information provided over totally real base fields, new techniques are required. Precomputing Stark units in relative quadratic extensions (where the conjecture is already known to hold) an...

متن کامل

Erdös-Gyárfás Conjecture for Cubic Planar Graphs

In 1995, Paul Erdős and András Gyárfás conjectured that for every graph of minimum degree at least 3, there exists a non-negative integer m such that G contains a simple cycle of length 2m. In this paper, we prove that the conjecture holds for 3-connected cubic planar graphs. The proof is long, computer-based in parts, and employs the Discharging Method in a novel way.

متن کامل

Hoffmann-Ostenhof's conjecture for traceable cubic graphs

It was conjectured by Hoffmann-Ostenhof that the edge set of every connected cubic graph can be decomposed into a spanning tree, a matching and a family of cycles. In this paper, we show that this conjecture holds for traceable cubic graphs. keywords: Cubic graph, Hoffmann-Ostenhof’s Conjecture, Traceable AMS Subject Classification: 05C45, 05C70

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Experimental Mathematics

سال: 2008

ISSN: 1058-6458,1944-950X

DOI: 10.1080/10586458.2008.10128871